Skip to contents

The camera matrix characterizes the mapping of a camera from 3D real-world coordinates to 2D coordinates in an image.

Usage

ov_cmat_estimate(X, x)

Arguments

X

matrix or data.frame: Nx3 matrix of 3D real-world coordinates

x

matrix or data.frame: Nx2 matrix of image coordinates

Value

A list with components coef (fitted transformation coefficients) and rmse (root mean squared error of the fitted transformation)

References

https://en.wikipedia.org/wiki/Camera_matrix. For general background see e.g. Ballard DH, Brown CM (1982) Computer Vision. Prentice-Hall, New Jersey

See also

Examples


## define real-world and corresponding image coordinates
xX <- dplyr::tribble(~image_x, ~image_y, ~court_x, ~court_y,   ~z,
                        0.054,    0.023,      0.5,      0.5,    0, ## near left baseline
                        0.951,    0.025,      3.5,      0.5,    0, ## near right baseline
                        0.752,    0.519,      3.5,      6.5,    0, ## far right baseline
                        0.288,    0.519,      0.5,      6.5,    0, ## far left baseline
                        0.199,    0.644,      0.5,      3.5, 2.43, ## left net top
                        0.208,    0.349,      0.5,      3.5, 0.00, ## left net floor
                        0.825,    0.644,      3.5,      3.5, 2.43, ## right net top
                        0.821,    0.349,      3.5,      3.5, 0.00) ## right net floor

C <- ov_cmat_estimate(X = xX[, 3:5], x = xX[, 1:2])

## fitted image coordinates using C
ov_cmat_apply(C, X = xX[, 3:5])
#>            [,1]       [,2]
#> [1,] 0.05437417 0.02263137
#> [2,] 0.95105054 0.02438193
#> [3,] 0.75249292 0.51875259
#> [4,] 0.28772625 0.51873571
#> [5,] 0.19900000 0.64414048
#> [6,] 0.20810535 0.34946240
#> [7,] 0.82500000 0.64385986
#> [8,] 0.82031638 0.34988510

## compare to actual image positions
xX[, 1:2]
#> # A tibble: 8 × 2
#>   image_x image_y
#>     <dbl>   <dbl>
#> 1   0.054   0.023
#> 2   0.951   0.025
#> 3   0.752   0.519
#> 4   0.288   0.519
#> 5   0.199   0.644
#> 6   0.208   0.349
#> 7   0.825   0.644
#> 8   0.821   0.349